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Abstract—Two Dimensional spectrum estimator from the 

statistical properties of wavelet packet coefficients of random 

process is derived in this paper. This Wavelet Packet Spectrum 

estimator has been applied to the fabric textures and the 

performance is compared with conventional 2-D Fourier-based 

spectrum estimator on same fabric texture for content based 

image retrieval. The results illustrate the effectiveness of the 

wavelet-based spectrum estimation. 
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I. INTRODUCTION 

Fabric textures are the structures of interwoven fibers or 

surface of other elements. The present paper investigates the 

capability of 2-D wavelet packets to yield an accurate Power 

Spectral Density (PSD) estimator for characterizing second 

order statistical properties of random fields. In this brief, we 

consider the standard Fourier Spectrum as benchmark and seek 

for estimating this spectrum by using suitable wavelets. 

This positions the Shannon wavelet at the focus of the paper: 

as the decomposition level tends to infinity, the bias of the 

Shannon wavelet spectrum estimator tends to 0. The bias of an 

arbitrary wavelet spectrum estimator then relates to the 

closeness of the wavelet under consideration to the Shannon 

wavelet. This closeness is measured through a parameter called 

wavelet order. 

The Wavelet Packet Spectrum is compared with Fourier 

Spectrum in order to show WPS is better than FS. The paper 

focuses on presenting the specificities that follow by 

dimensionality increasing from: 

 

 The analytic form of the wavelet packet based PSD, 

 The singular paths of Fractional Brownian fields, 

 The 2-D wavelet packet PSD estimator. 

 

Furthermore, for textured image analysis, the paper provides 

experimental results for evaluating the relevance of spectrum 

estimation by  

 Comparing PSD estimated from Fourier and wavelet 

packet methods and  

 Performing content based image retrieval associated 

with spectral similarity measurements in  the  Fourier  

and wavelet packet domains. 

 

II. FOURIER SPECTRUM FOR TEXTURE ANALYSIS 

A spectrum is a relationship typically represented by a plot of 

the magnitude or relative value of some parameter against 

frequency. Every physical phenomenon, whether it is an 

electromagnetic, thermal, mechanical, hydraulic or any other 

system, has a unique spectrum associated with it. In electronics, 

the phenomena are dealt with in terms of signals, represented as 

fixed or varying electrical quantities of voltage, current and 

power. These quantities are typically described in the time 

domain and for every function of time, f(t), an equivalent 

frequency domain function F(ω) can be found that specifically 

describes the frequency-component content (frequency 

spectrum) required to generate f(t). A study of relationships 

between the time domain and its corresponding frequency 

domain representation is the subject of Fourier analysis and 

Fourier transforms. 

The forward Fourier transform, time to frequency domain, of 

the function x(t) is defined 

F[x(t)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
 =X(ω)                                        (1) 

and the inverse Fourier transform , frequency to time domain, of  

X(ω) is 

F-1 [X(ω)]=
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞
=x(t)                                 (2) 

In order to estimate the Fourier Spectrum we have to 

consider below steps by considering framework 

1. Divide the data sequence x(n) into L ≤ N/M segments, 

    xl
M (n) 

2. Multiply a segment by an appropriate window 

3. Take the Fourier transform of the product 

4. Multiply procedure 3 by its conjugate to obtain the 

    spectral density of the segment 

5. Repeat procedures 2 through 4 for each segment so 

    that the average of these periodogram estimates produce 

    the Power Spectral Density estimate, equation. 

 

III. WAVELET PACKET SPECTRUM ESTIMATOR 

A.  Introduction on 2-D Wavelet Packets: 

We consider the 2-D separable wavelet packet 

decomposition in a continuous time signal setting for presenting 

theoretical results [6]. Advanced concepts and algorithms 
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concerning 1D and 2-D wavelet packet analysis can be found in 

[6]. The reader is also invited to refer to [7], [8] (wavelets) and 

[4], [9] (wavelet packets) for more details on the statistical 

properties of wavelet transforms, when the decomposition 

relates to a random process. In this decomposition, the wavelet 

paraunitary filters H0 (low-pass, scaling filter) and H1 (high-

pass, wavelet filter) are used to split the input functional space U 

= W0,0 ⊂ L2(R2) into orthogonal subspaces. 

Assume that the scaling filter is with order r: H0 ≡ Hr0, where 

r is the largest non-negative integer 

Hr0(ω) = (
1+e−iω

2
)
r

Q(eiω)                                                                    (3) 

filter H0
s denoting the scaling filter associated with the Shannon 

wavelet. Then the 1D multiscale filters  

(Hr j,ni )i=1,2 have very tight supports when r is large. 

 

B. Wavelet Packet Paths 

This section presents a specific wavelet packet path 

description derived from the binary sequence approach of [11] 

for representing nested wavelet packet subspaces. This 

description is suitable for establishing asymptotic properties of 

2-D wavelet packets with respect to the increase of the 

decomposition level. It is worth mentioning that some specific 

paths will present singular behavior, depending on the input 

random field: The wavelet coefficients of certain non-stationary 

random fields on the sub bands associated with these singular 

paths will remain non-stationary. As a matter of example, 

 

1) The separable Fractional Brownian field analyzed which 

admits frequency indices n( j ) such that n1( j ) = 0 (resp. n2( 

j ) = 0) for every j as singular frequency indices. The set of 

(singular) paths associated with these frequency indices will 

be denoted by Pn/n1=0 (resp. Pn/n2=0). 

2) The isotropic Fractional Brownian field analyzed which 

admits a unique singular path: the approximation path 

denoted by P0 and associated with frequency indices nP0 (j) 

= 0 for every j . 

 

C. 2-D Wavelet Packet based Spectrum Estimation 

The Wavelet Packet Spectrum is estimated by using Shannon 

wavelet. The Shannon wavelet is defined by 

Ф(t)=sinc(t/2)cos(3πt/2) and its Fourier transform 

                               (4) 

The properties of Shannon wavelet are  

1. It can be used for both complex and simple signals 

2. It gives accurate results than other wavelets. 

The Shannon wavelet is as shown in Figure 1 

 
Fig.1: Shannon wavelet 

The spectrum estimation method presented in this section 

follows from the asymptotic analysis of the autocorrelation 

functions of the 2-D wavelet packet coefficients. This 

asymptotic analysis is performed with respect to the wavelet 

order r and the wavelet decomposition level j. When r increases, 

the asymptotic behavior of the sequence of wavelet functions is 

driven by the Shannon wavelet functions. In this respect, we 

consider the Shannon wavelets in below and derive asymptotic 

results with respect to the wavelet decomposition level. The case 

of a wavelet with order r will be considered as an approximation 

of the Shannon limiting behavior when r is large enough. 

 

D. 2-D Wavelet Packet based Spectrum Estimation 

The following provides a non-parametric method for 

estimating spectrum γ of 2-D random fields on the basis of the 

convergence criteria. It follows that 

 γ (ω1[P],ω2[P]) = lim j→+∞ RS j,n[0, 0]  so that the continuity 

points of spectrum γ can be estimated by sub band variances 

(values{ RS j,n[0, 0]} provided that the Shannon wavelet is used 

and j is large enough. Furthermore, we can derive from the 

convergence criteria, several spectrum estimators by considering 

wavelets with finite orders r (Shannon wavelet corresponds to r 

= +∞≡ S), the accuracy of the spectrum estimation being 

dependent on the wavelet order as shown in Proposition 3 

below. Assuming a uniform sampling (regularly spaced 

frequency plane tiling), the method applies upon the following 

steps. 

1) Define a frequency grid compose with frequency points 

    (
𝑃1𝜋

2𝑖
,
𝑃2𝜋

2𝑖
)  for P1,P2 ∈ {0, 1, . . . , 2 j − 1} (natural ordering). 

2) Compute, the index n ∈ {0, 1, . . . , 4 j − 1}    

    (Corresponding to the wavelet packet ordering) associated   

     with (P1, P2). 

3) Set, for any pair (P1, P2) given in step 1) and the                     

corresponding n obtained from step 2). 

There are three propositions to find Wavelet based Spectrum as 

shown below: 
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Proposition 1: The height of this fractional moment depends 

on the scaling function associated with the wavelet packet 

decomposition.  Note also that when both n1 = n2 = 0, the non-

stationary in wavelet coefficients   is more intricate, mainly 

because the analyzing function has no vanishing moments.  

Proposition 2: The autocorrelation function of the wavelet 

packet coefficients of separable and isotropic Fractional 

Brownian Field can be written in the integral form.  

Proposition 3: We derive that the bias of the estimator given 

by depends on   the decomposition level and wavelet order used. 

This bias tends to 0 when both j and r tends to infinity. 

 

IV. APPLICATION OF WAVELET PACKET SPECTRUM TO 

FABRIC TEXTURE 

The below shown Figure 2 is one of the Fabric texture and 

then  

 
Fig.2: Fabric texture 

The Wavelet Packet Spectrum estimator is applied to this 

texture information to derive Wavelet Packet Spectrum of this 

texture which is as shown below Figure 3: 

 
Fig.3: Wavelet Packet Spectrum for above fabric texture 

The comparison should be made with Fourier Spectrum 

which is shown in Figure 4.  

           

            FT-PSD              Fabric Texture           WPT-PSD 

 
Fig4: Textures image and their spectra γ computed by using discrete Fourier and 

wavelet packet transforms. Abscissa of the spectra images  consist  of  a  regular  

grid over [0, π/2] × [0, π/2]. 

Note: Colors represented in Figure 4 are simulated from a 

light source in order to ease 3-D visualization: red color [value 

1] corresponds to fully illuminated shapes whereas blue color 

[value 0] is associated to shaded areas, green color corresponds 

to value 0.5. 

 

V. ADVANTAGES OF PROPOSED METHOD 

1. The over complete structure of WPT provides flexibility for 

the signal representation to achieve better classification 

accuracy. 

2. The best basis provides the most suitable frequency sub 

bands for the signal representation. 

3. The subject-based adaptation feature extraction with this 

method constructs a wavelet packet best basis fitted for each 

object and so it can find the suitable and specific features 

for a subject's signals. 

 

VI. APPLICATIONS OF WAVELET PACKET SPECTRUM 

1. Hurst parameter estimation for self-similar medical images, 

see for instance [2]. 

2. Texture modeling by using Wold decompositions estimation 

the poles of the spectrum is necessary to determine the 

spectral singularities involved in the deterministic texture 

contribution. These poles are associated with peaks of the 

spectrum and their number, as well as their location 

determines the accuracy of the modeling. 

3. Spread-spectrum image watermarking. 

 

VII. EXPERIMENTAL RESULTS WITH CONCLUSION 

Two issues are addresses in the paper: (i) estimating the PSD 

from the statistical properties of the wavelet packet coefficients, 

(ii) applying to texture, (iii) comparing the results with Fourier 

Spectrum. Issue (i) has been tackled from asymptotic properties 

of the Shannon wavelet packets and the spectrum estimation 

method proposed is more effective for wavelet filters with large 

order. This section provides experimental results on spectral 

analysis of textures. A Wavelet Packet Spectrum of fabric 

texture image is provided in Figure.3. The Wavelet Packet 

Spectra have been computed with the decomposition level is 6 

and the Daubechies wavelet with order r = 7 is used. Spectra 

computed from the Fourier transform are also given in this 

figure 4, for comparison purpose. From a visual analysis of 

images, one can remark that most of this texture exhibit non 

overlapping textons replicating repeatedly: thus, coarsely, we 

can distinguish several frequencies having significant variance 

contributions (from a theoretical consideration), when the 

texture does not reduce to the replications of a single texton. In 

addition, when these textons occupy approximately the same 

spatial area (see for instance “Fabric” textures in Figure 2), the 

frequencies with high variance contributions (peak in the 

spectrum) are close in terms of their spatial location (from a 

theoretical consideration). 



IJRECE VOL. 2 ISSUE 3 JUL-SEP 2014                                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

                                                                                                           A UNIT OF I2OR                                                                      63 | P a g e   

The above heuristics, issued from visual image analysis, are 

confirmed by considering the wavelet packet spectra (see for 

instance spectra of “Fabric” textures in Figure 2), whereas, in 

most cases, the two dimensional discrete Fourier transform 

exhibits only one peak. One can highlight that the poorness of 

the Fourier spectra is not due to a lack of resolution in the 

sampling step of the Fourier transform. This poorness can be 

explained by noting that Fourier transform is sensitive to global 

spatial regularity. In contrast wavelet packets can capture local 

spatial regularity and lead to a more informative spectrum 

estimator when several frequencies contribute in texture 

variance distribution. 
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